Specification of Thermoelectric Module TEFC1-01809P

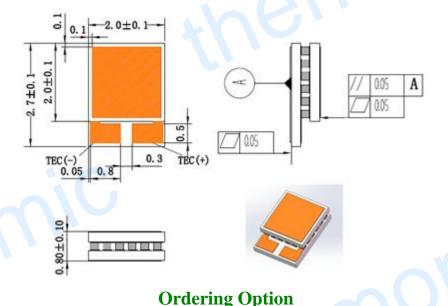
Application

• Temperature stabilizer

Photonics

Description

The 18 couples, $2.0/2.7 \text{ mm} \times 2.0 \text{mm}$ size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to $70 \, \text{C}$, designed for superior cooling and heating up to $200 \, \text{C}$ applications in photonics. It has maximum $200 \, \text{C}$ processing temperature. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.


Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	2.24	2.41	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	0.96	0.96	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	1.38	1.49	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	2.00	2.15	The module resistance is tested under AC	
Tolerance (%)	10%		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Suffix	Thickness	Flatness/	Lead wire length(mm)
Sullix	H (mm)	Parallelism (mm)	Standard/Optional length
TF	$0:0.80\pm0.10$	0: 0.05/0.05	No Wires

Manufacturing Options

A. Solder:

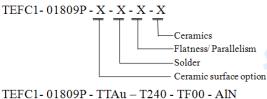
1. T240: SbSn (Tmelt=240 ℃)

2. T280: AuSn (Tmelt=280 °C)

B. Sealant:

NS: No sealing

C. Ceramics:

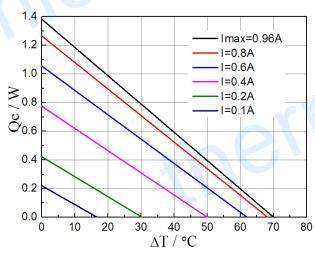

AlN: Aluminum Nitride

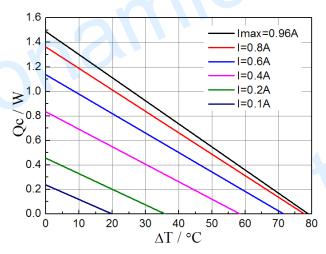
D. Ceramics Surface Options:

Hot side: Metalized (Au plating)

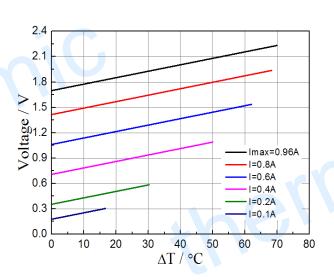
Cold side: Metalized (Au plating)

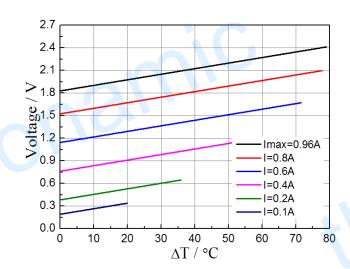
Naming for the Module

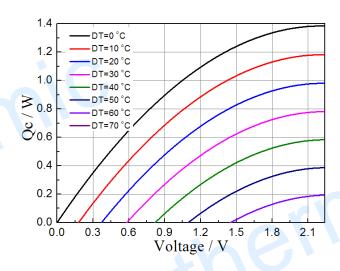


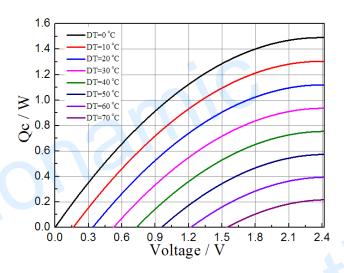

Specification of Thermoelectric Module

TEFC1-01809P


Performance Curves at Th=27 ℃

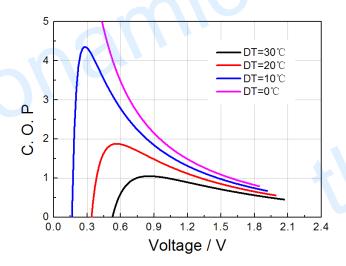

Performance Curves at Th=50 ℃



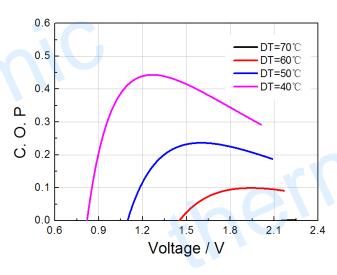

Standard Performance Graph Qc= f(DT)

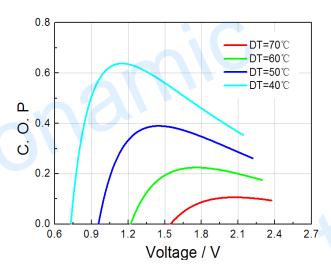
Standard Performance Graph V = f(DT)

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEFC1-01809P


Performance Curves at Th=27 ℃



Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- \bullet Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.