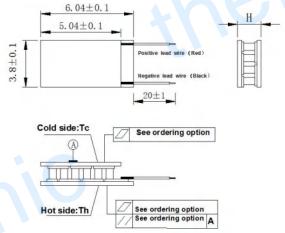
Specification of Thermoelectric Module TEFC1-02307P

Description

The 23 couples, 3.8mm× 5.04/6.04mm size porch type module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 74 °C, designed for superior cooling and heating up to 100/200 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	74	83	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	3.03	3.26	Voltage applied to the module at DT _{max}
I _{max} (Amps)	0.7	0.7	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	1.36	1.48	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	3.27	3.47	The module resistance is tested under AC
Tolerance (%)	10%		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)
	H (mm)	Parallelism (mm)	Standard/Optional length
TF	$0:1.8 \pm 0.1$	0: 0.03/0.03	20±1/Specify
TF	$1:1.8 \pm 0.03$	1: 0.015/0.015	20±1/Specify

Eg. TF11: Thickness 1.8 ± 0.03 (mm) and Flatness 0.015/0.015 (mm)

Manufacturing Options

A	C -1	
Α.	50	der:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217° C)

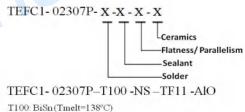
2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

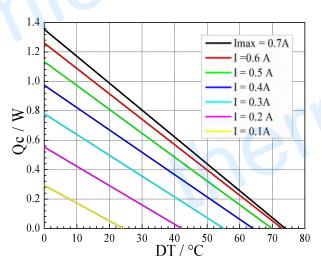

1. Alumina (Al₂O₃, white 96%)

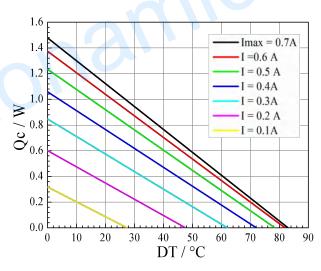
1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

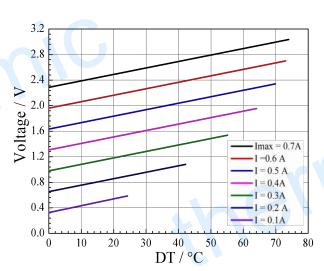
2. Metalized

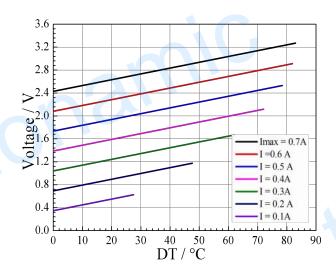
Naming for the Module

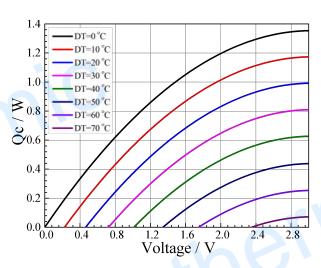


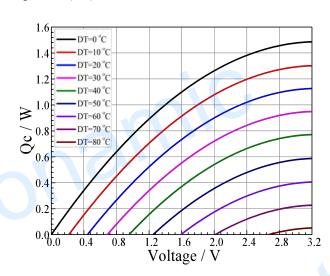

NS: No sealing AlO: Alumina, white 96%

Specification of Thermoelectric Module TEFC1-02307P

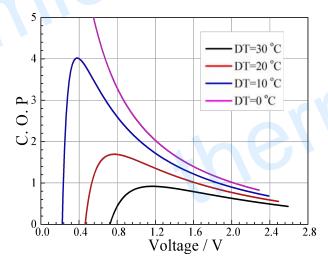

Performance Curves at Th=27 °C

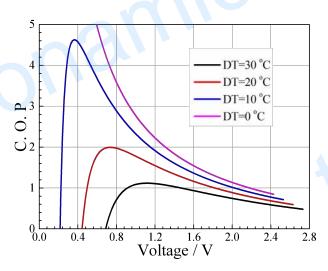

Performance Curves at Th=50 °C



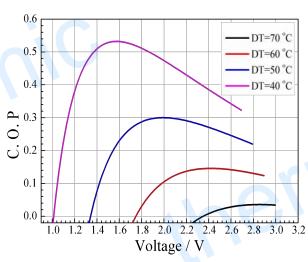

Standard Performance Graph Qc= f(DT)

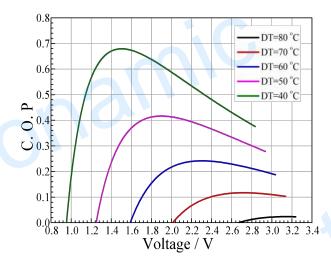
Standard Performance Graph V = f(DT)




Standard Performance Graph Qc= f(V)

Specification of Thermoelectric Module TEFC1-02307P


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 70/80 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.