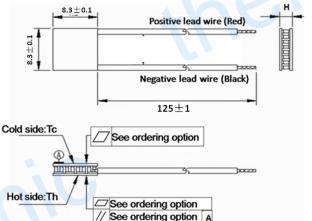
Specification of Thermoelectric Module TEFC1-03120

Description

The 31 couples, $8.3 \text{ mm} \times 8.3 \text{ mm}$ size single module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to $70 \,^{\circ}\text{C}$, designed for superior cooling and heating up to $100 \,^{\circ}\text{C}$ applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

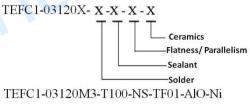
Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	3.94	4.30	Voltage applied to the module at DT _{max}
I _{max} (amps)	2.37	2.37	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	5.77	6.21	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (ohms)	1.25	1.38	The module resistance is tested under AC
Tolerance (%)	10%		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)
	H (mm)	Parallelism (mm)	Standard/Optional length
TF	0:2.2±0.1	0: 0.03/0.03	125 ± 1/Specify
TF	1:2.2±0.03	1: 0.015/0.015	125 ± 1/Specify

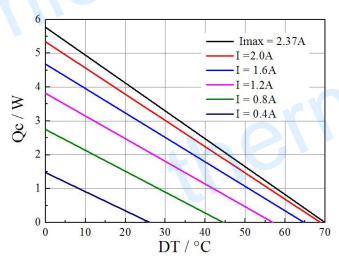

Eg. TF01: Thickness (Without plating) 2.2 ± 0.1 (mm) and Flatness 0.015 / 0.015 (mm)

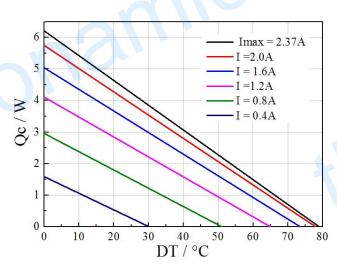
Manufacturing Options

A. Solder:	B. Sealant:
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant
C. Ceramics:	D. Ceramics Surface Options:
1. Alumina (Al ₂ O ₃ , white 96%)	1. Blank ceramics (not metalized)

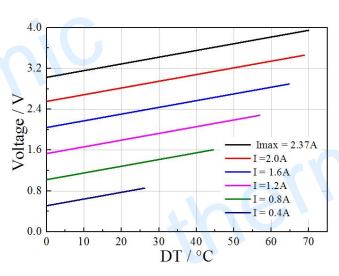
2. Aluminum Nitride (AlN) 2. Metalized

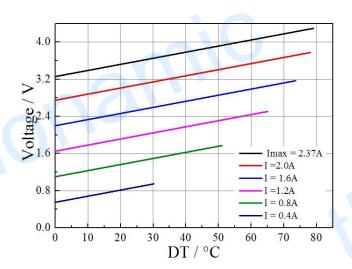
Naming for the Module

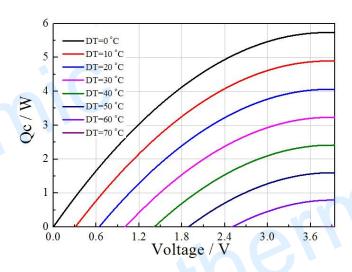

T100: BiSn(Tmelt=138°C)

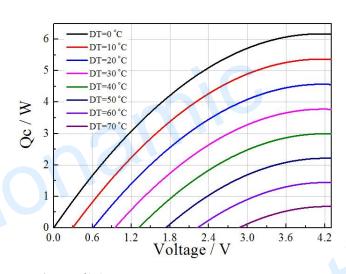

NS: No sealing AlO: Alumina (Al2O3, white 96%)

Specification of Thermoelectric Module TEFC1-03120

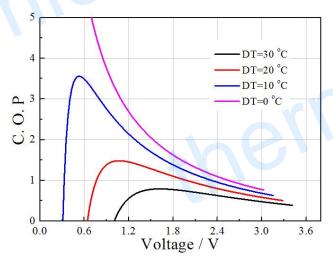


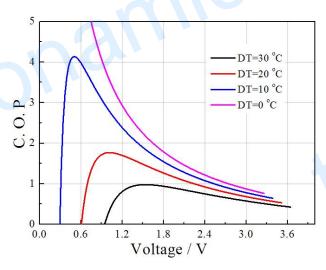

Performance Curves at Th=50 °C



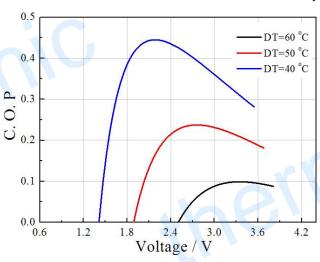

Standard Performance Graph Qc= f(DT)

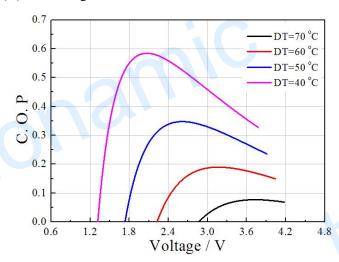
Standard Performance Graph V = f(DT)




Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module TEFC1-03120


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.