Specification of Thermoelectric Module TEFC1-03121

Description

The 31 couples, 8.0 mm × 8.0mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- •Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the	
			module when cooling capacity is zero at cold side	
U _{max} (Voltage)	3.86	4.17	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	2.1	2.1	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	5.20	5.60	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	1.40	1.51	The module resistance is tested under AC	
Tolerance (%)	10%		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

B. Sealant:

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

A. Solder:

1. Alumina (Al₂O₃, white 96%)

D. Ceramics Surface Options:

2. Aluminum Nitride (AlN)

1. Blank ceramics (not metalized)

2. Metalized

Ordering Option

Suffix	Thickness H (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	$0:2.55\pm0.15$	0: 0.10/0.15	50±3

Specification of Thermoelectric Module

TEFC1-03121

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph Qc= f(DT)

Standard Performance Graph V= f(DT)

Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module

TEFC1-03121

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.