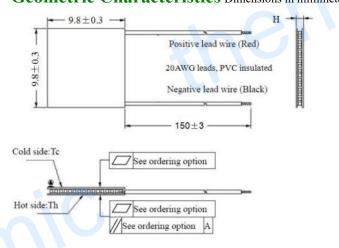
Specification of Thermoelectric Module TES1-01744

Description

The 17 couples, 9.8mm x 9.8mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	2.16	2.34	Voltage applied to the module at DT _{max}
I _{max} (Amps)	4.4	4.4	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	5.9	6.3	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	0.38	0.40	The module resistance is tested under AC
Tolerance (%)	10%		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:	B. Sealant:
TI. Doluci.	D. Scalant.

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C) 2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C) 3. EPS: Epoxy sealant

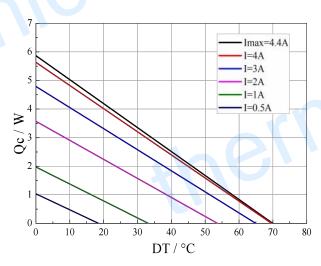
C. Ceramics: D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%) 1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN) 2. Metalized

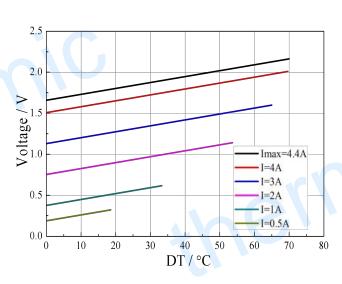
Ordering Option

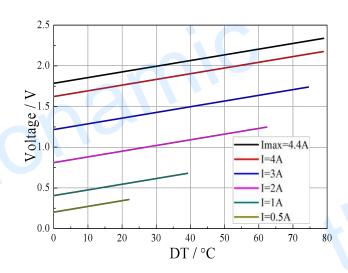
Suffix	Thickness H (mm) Flatness/ Parallelism (mm)		Standard Lead wire length /Optional length(mm)
TF	0:3.1± 0.1	0: 0.03/0.03	150±3/Specify
TF	1: 3.1 ± 0.03	1: 0.015/0.015	150±3/Specify

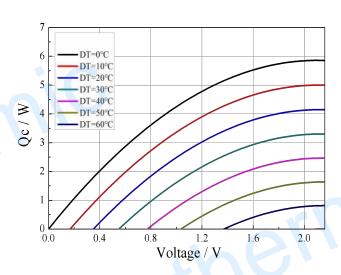

Eg. TF11: Thickness3.1 \pm 0.03 (mm) and Flatness 0.015/0.015 (mm)

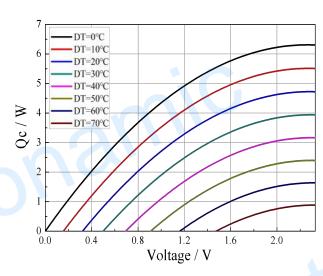
Specification of Thermoelectric Module

TES1-01744

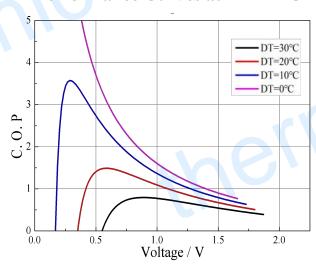

Performance Curves at Th=27 °C

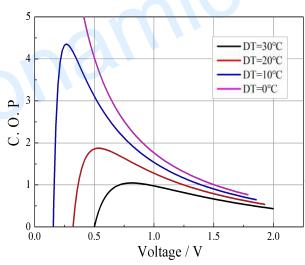

Performance Curves at Th=50 °C



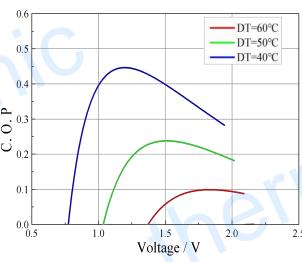

Standard Performance Graph Qc= f(DT)

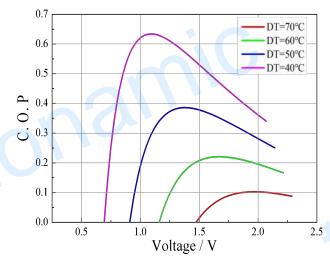
Standard Performance Graph V= f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-01744




Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.