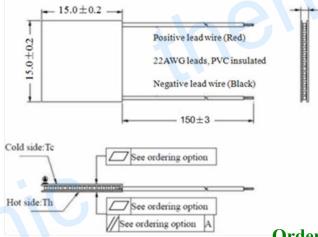
Specification of Thermoelectric Module TES1-03123

Description

The 31 couples, 15mm x 15mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	3.85	4.15	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	2.34	2.34	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	5.85	6.25	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	1.25	1.35	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

2Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:	B. Sealant:
TI Soluci.	D. Scarance

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C) 2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C) 3. EPS: Epoxy sealant

C. Ceramics: D. Ceramics Surface Options:

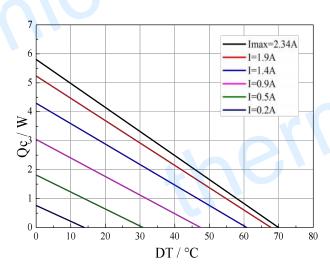
1. Alumina (Al₂O₃, white 96%)

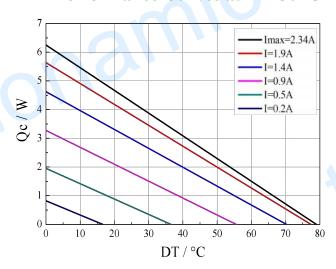
1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN) 2. Metalized

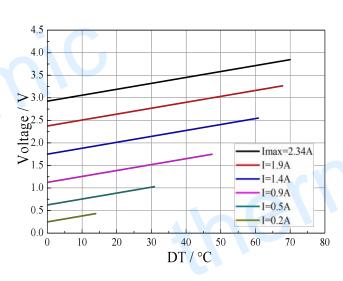
Ordering Option

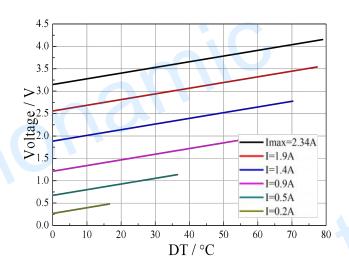
Suffix	Thickness H (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	0:4.3± 0.1	0: 0.05/0.05	125±3/Specify
TF	1: 4.3± 0.03	1: 0.02/0.02	125±3/Specify

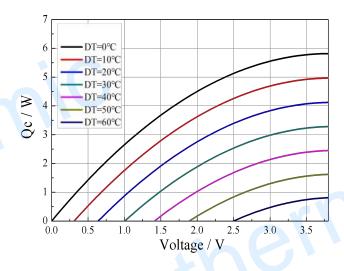

Eg. TF00: Thickness 4.3 ± 0.1 (mm) and Flatness 0.05/0.05 (mm)


Specification of Thermoelectric Module

TES1-03123


Performance Curves at Th=27 °C

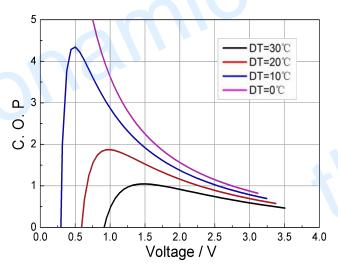

Performance Curves at Th=50 °C



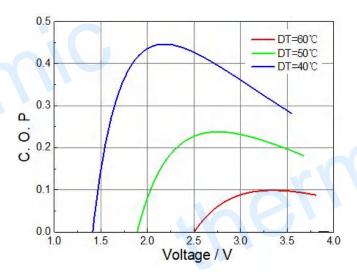
Standard Performance Graph Qc= f(DT)

Standard Performance Graph V= f(DT)

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-03123


Performance Curves at Th=27 °C

DT=30°C DT=20°C DT=10°C DT=0°C DT=0°C Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- \bullet Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.