## **Specification of Thermoelectric Module**

#### TES1-03850OD24ID9.8

#### **Description**

The 38 couples round shape with center hole, 24 mm (OD) × 9.8 (ID) mm size single module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C/200 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

#### **Features**

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

#### **Application**

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

#### **Performance Specification Sheet**

| Th(°C)                     | 27   | 50   | Hot side temperature at environment: dry air, N <sub>2</sub>                                              |  |
|----------------------------|------|------|-----------------------------------------------------------------------------------------------------------|--|
| DT <sub>max</sub> (°C)     | 70   | 79   | Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side |  |
| U <sub>max</sub> (Voltage) | 4.7  | 5.2  | Voltage applied to the module at DT <sub>max</sub>                                                        |  |
| I <sub>max(</sub> amps)    | 5.8  | 5.8  | DC current through the modules at DT <sub>max</sub>                                                       |  |
| Q <sub>Cmax</sub> (Watts)  | 17.1 | 19.2 | Cooling capacity at cold side of the module under DT=0 °C                                                 |  |
| AC resistance(ohms)        | 0.63 | 0.68 | The module resistance is tested under AC                                                                  |  |
| Tolerance (%)              | ± 10 |      | For thermal and electricity parameters                                                                    |  |

#### Geometric Characteristics Dimensions in millimeters



### **Ordering Option**

| Suffix                                                          | Thickness        | Flatness/        | Lead wire length(mm)     |  |  |
|-----------------------------------------------------------------|------------------|------------------|--------------------------|--|--|
|                                                                 | H (mm)           | Parallelism (mm) | Standard/Optional length |  |  |
| TF                                                              | $0:3.1 \pm 0.1$  | 0:0.07/0.07      | 50±1/Specify             |  |  |
| TF                                                              | $1:3.1 \pm 0.03$ | 1:0.025/0.025    | 50±1/Specify             |  |  |
| Eq. TE01, Thiolmass 2.1 + 0.1 (mm) and Elatross 0.025/0.25 (mm) |                  |                  |                          |  |  |

Eg. TF01: Thickness  $3.1 \pm 0.1$  (mm) and Flatness 0.025/0.25 (mm)

#### **Manufacturing Options**

#### A. Solder:

1. T100: BiSn (Tmelt=138°C)

2. T200: CuSn (Tmelt = 227 °C)

#### **B. Sealant:**

1. NS: No sealing (Standard)

2. SS: Silicone sealant

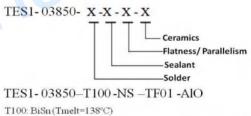
3. EPS: Epoxy sealant

4. Customer specify sealing

other than above

#### C. Ceramics:

- 1. Alumina (Al<sub>2</sub>O<sub>3</sub>, white 96%)
- 2. Aluminum Nitrde (AlN)


#### **D. Ceramics Surface Options:**

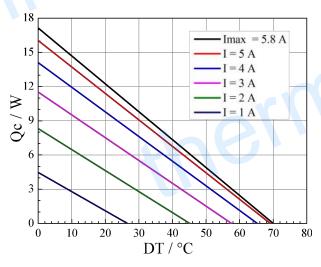
1. Blank ceramics (not metallized)

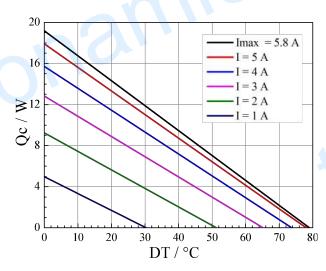
AlO: Alumina, white 96%

2. Metallized (Au plating)

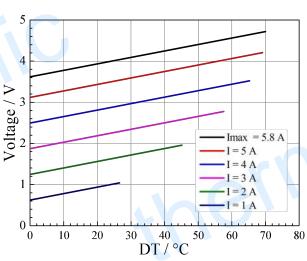
#### Naming for the Module

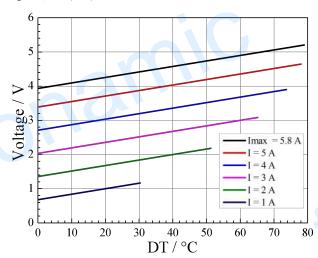



NS: No sealing

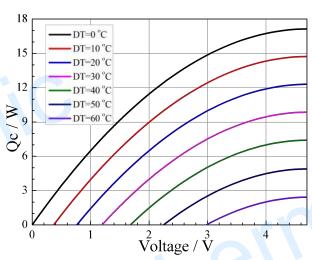

# **Specification of Thermoelectric Module**

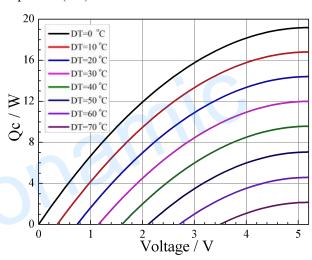
#### TES1-03850OD24ID9.8





#### Performance Curves at Th=50 °C







Standard Performance Graph Qc= f(DT)



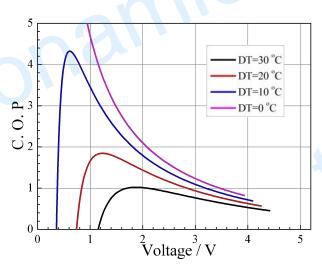


Standard Performance Graph V = f(DT)

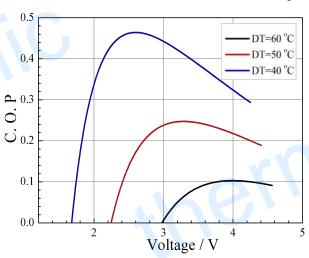


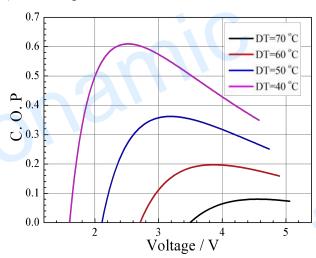


Standard Performance Graph Qc = f(V)


# **Specification of Thermoelectric Module**

#### TES1-03850OD24ID9.8


#### Performance Curves at Th=27 °C


# DT=30 °C DT=20 °C DT=10 °C DT=0 °C Voltage / V

#### Performance Curves at Th=50 °C



Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C





Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

**Remark:** The coefficient of performance (COP) is the cooling power Qc/Input power ( $V \times I$ ).

#### **Operation Cautions**

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I<sub>max</sub> or V<sub>max</sub>
- Work under DC

Note: All specifications subject to change without notice.