Specification of Thermoelectric Module TES1-04157CH9.5

Description

The 41 couples, 22.5mm x 17.5mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the	
			module when cooling capacity is zero at cold side	
U _{max} (Voltage)	5.1	5.5	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	5.7	5.7	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	18.7	20.1	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	0.70	0.75	The module resistance is tested under AC	
Tolerance (%)	10%		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

0.03 A COLD SIDE 0.03 Ø95-0 (-) NEGATIVE

Manufacturing Options

A. Solder:	B. Sealant:

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217° C) 2. SS: Silicone sealant

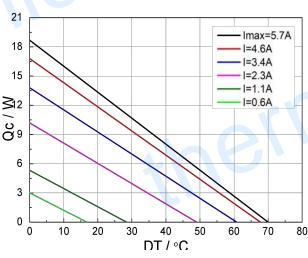
3. T240: SbSn (Tmelt = 240° C) 3. EPS: Epoxy sealant

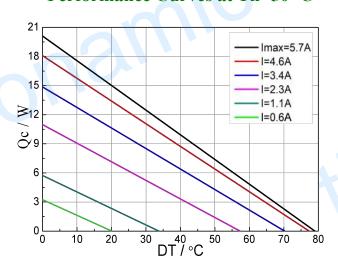
C. Ceramics: **D. Ceramics Surface Options:**

1. Blank ceramics (not metalized) 1. Alumina (Al₂O₃, white 96%)

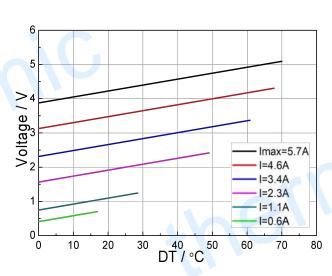
2. Metalized 2. Aluminum Nitride (AlN)

Ordering Option

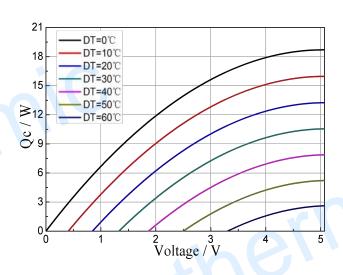

Suffix	Thickness H (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	0:3.1± 0.10	0: 0.05/0.05	No wire /Specify
TF	1:3.1± 0.03	1: 0.03/0.03	No wire /Specify

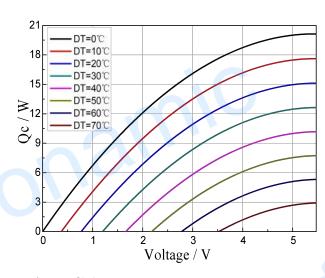

Specification of Thermoelectric Module

TES1-04157CH9.5

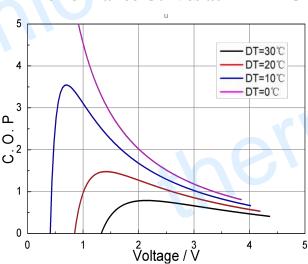

Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

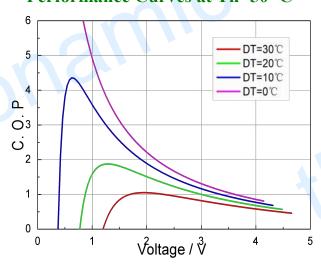



Standard Performance Graph Qc= f(DT)

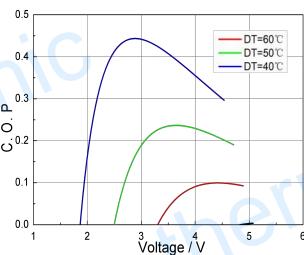
Standard Performance Graph V = f(DT)

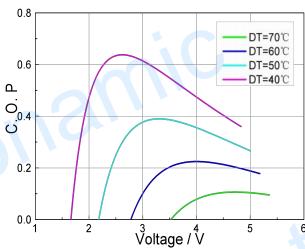


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-04157CH9.5





Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Cold side of the module sticked on the object being cooled
- Hot side of the module mounted on a heat radiator
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.