Specification of Thermoelectric Module TES1-06320M

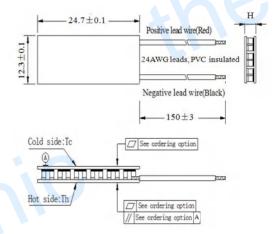
Description

The 63 couples, 12.3 mm × 24.7 mm size module is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100/200 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

(mm)

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	8.1	8.7	Voltage applied to the module at DT _{max}	
I _{max} (amps)	2.4	2.4	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	12.2	13.3	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (ohms)	2.9	3.0	The module resistance is tested under AC	
Tolerance (%)	10%		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)		
	H (mm)	Parallelism (mm)	Standard/Optional length		
TF	$0:3.4 \pm 0.1$	0: 0.07/0.07	150 ± 3 / Specify		
TF	1:3.4± 0.03	1: 0.025/0.025	150 ± 3 / Specify		
Fig. TE01: Thickness 3.4 + 0.1 (mm) and Flatness/ Parallelism 0.025/0.025					

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

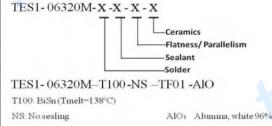
2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

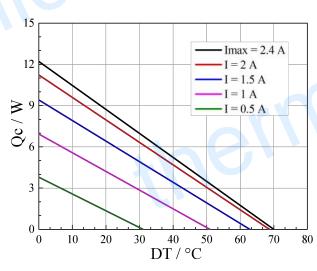

1. Alumina (Al₂O₃, white 96%)

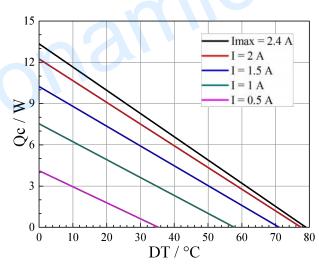
1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

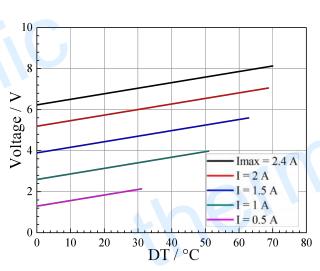
2. Metalized

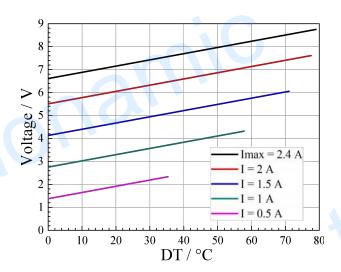
Naming for the Module

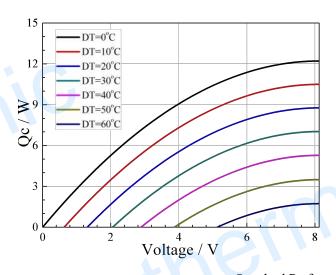


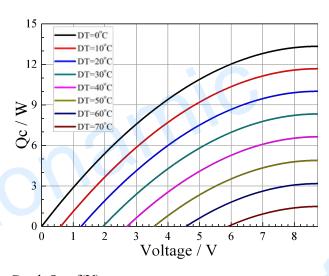

Specification of Thermoelectric Module

TES1-06320M

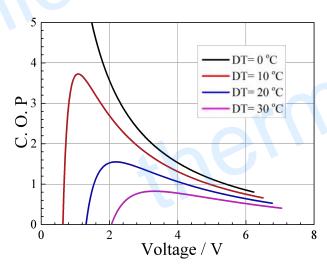


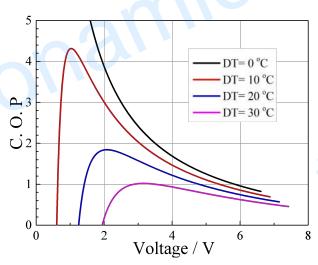

Performance Curves at Th=50 °C



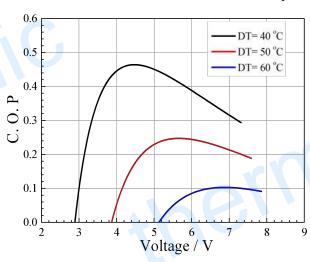

Standard Performance Graph Qc= f(DT)

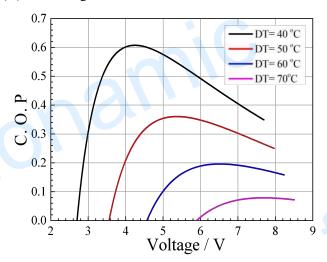
Standard Performance Graph V = f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-06320M


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.