Specification of Thermoelectric Module

TES1-07980L1T200-SS-AC-M1

Description

The 79 couples, 40mm × 13mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up applications. All the dices and metallic parts are coated with a layer of thin film for anti-corrosion and oxidation in bad working environment that ensure the module can work for long life. We can design and manufacture the custom made module according to your special requirements.

Features

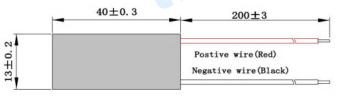
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control

Cold side:Tc

Hot side: Th

• Exceptionally reliable in quality, high performance

Application


- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT (9C)	70	79	Temperature Difference between cold and hot side of the
DT _{max} (°C)		79	module when cooling capacity is zero at cold side
U _{max} (Voltage)	9.7	10.5	Voltage applied to the module at DT _{max}
I _{max(} amps)	7.8	7.8	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	49.5	53.3	Cooling capacity at cold side of the module under DT=0 °C
AC resistance(ohms)	1.00	1.08	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

See ordering option

See ordering option

See ordering option

- 1. T100: BiSn (Tmelt=138°C)
- 1. NS: No sealing (Standard)
- 2. T200: CuAgSn (Tmelt = 217°C)
- 2. SS: Silicone sealant

B. Sealant:

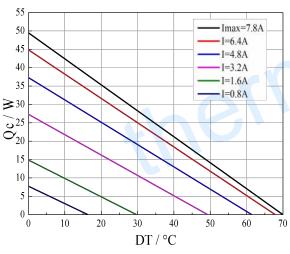
- 3. T240: SbSn (Tmelt = 240° C)
- 3. EPS: Epoxy sealant

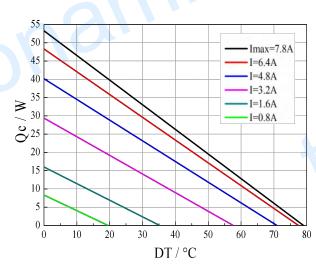
C. Ceramics:

A. Solder:

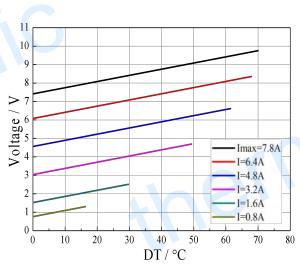
- **D. Ceramics Surface Options:**
- 1. Alumina (Al₂O₃, white 96%)
- 1. Blank ceramics (not metalized)
- 2. Aluminum Nitride (AlN)
- 2. Metalized

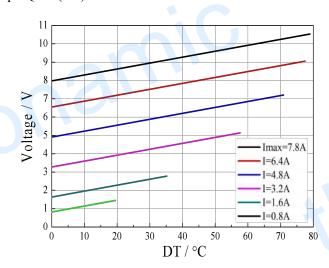
Ordering Option

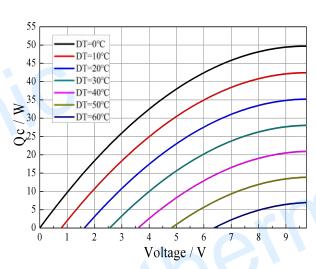

Suffix	Thickness (mm) Flatness/ Parallelism (mm)		Lead wire length(mm) Standard/Optional length
TF	0:2.95±0.1	0:0.08/0.08	200±3/Specify

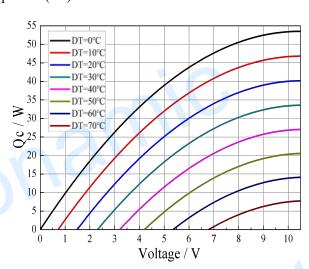

Specification of Thermoelectric Module

TES1-07980L1T200-SS-AC-M1


Performance Curves at Th=27 °C

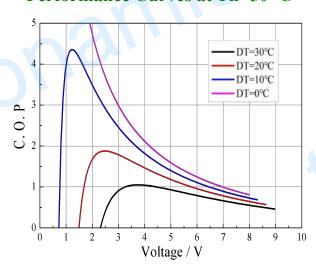

Performance Curves at Th=50 °C



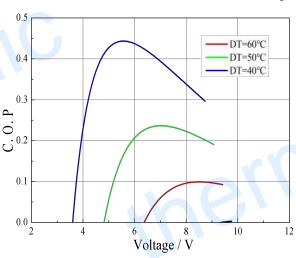

Standard Performance Graph Qc= f(DT)

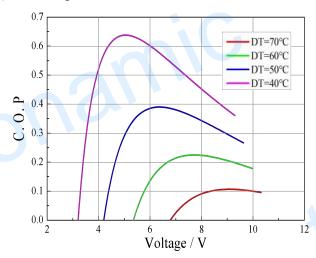
Standard Performance Graph $V= f(\Delta T)$

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-07980L1T200-SS-AC-M1


Performance Curves at Th=27 °C


5 4 DT=30°C DT=20°C DT=10°C DT=0°C DT=0°C Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation or storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC