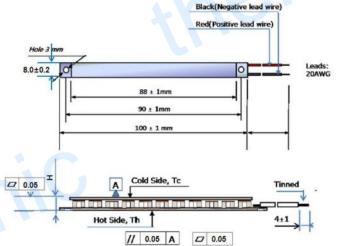
Specification of Thermoelectric Module TES1-08850L1

Description

The 88 couples,8mm \times 84/100mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 72 °C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
	72	81	Temperature Difference between cold and hot side of the	
DT _{max} (°C)			module when cooling capacity is zero at cold side	
U _{max} (Voltage)	11.1	12.0	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	5.0	5.0	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	35.9	38.6	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	1.68	1.81	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Ordering Option

Manufacturing Options

A. Solder:

1.T100: BiSn (Tmelt = 138 °C)

2.T200: CuSn (Tmelt = 227 °C)

B. Sealant:

1.NS: Silicone sealant

C. Ceramics:

1. Alumina (Al₂O₃, white 96%)

D. Ceramics Surface Options:

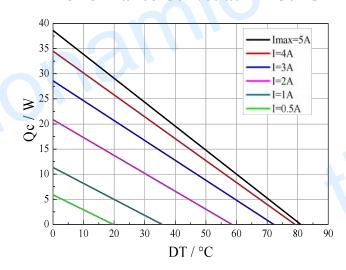
1.Blank ceramics (not metallized)

E. Pellet Surface Options:

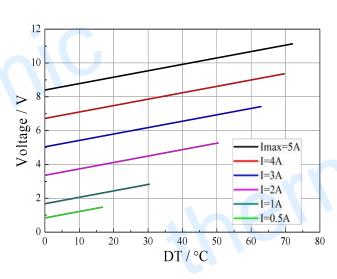
1.AC: Anti-oxidation Coating

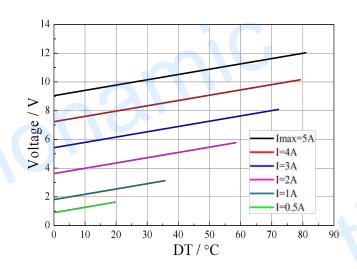
Suffix	Thickness H (mm)	Flatness/ Parallelism (mm)Parallelism (mm)	Lead wire length(mm)Standard/ Optional length
TF	0: 4.0 ± 0.1	0: 0.05/0.05	150±3/Specify

Specification of Thermoelectric Module

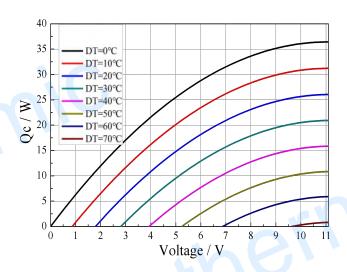

TES1-08850L1

Performance Curves at Th=27 °C


40 Imax=5A 35 I=4A I=3A 30 I=2A I=1A I=0.5A ≥ 20 10 10 20 30 60 70

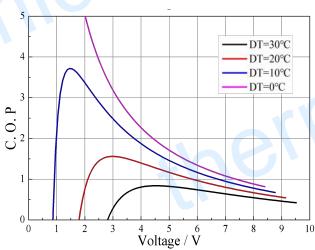

DT / °C

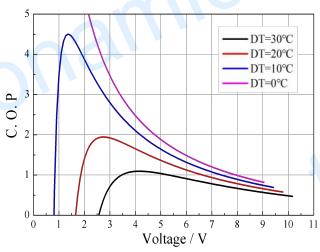
Performance Curves at Th=50 °C



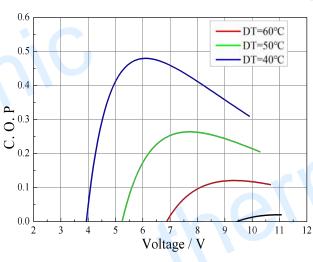
Standard Performance Graph Qc= f(DT)

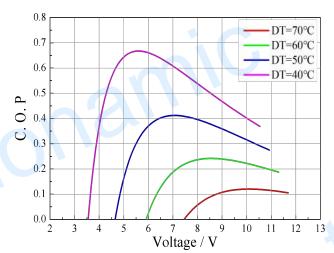
Standard Performance Graph V= f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-08850L1


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.