Specification of Thermoelectric Module

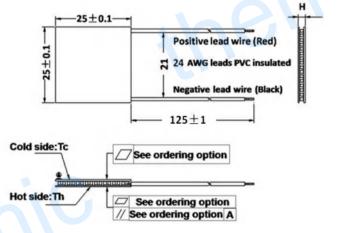
TES1-12715

Description

The 127 couples, 25 mm x 25 mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	15.9	17.2	Voltage applied to the module at DT _{max}
I _{max} (Amps)	1.8	1.8	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	18.1	19.5	Cooling capacity at cold side of the module under DT=0 °C
AC resistance (Ohms)	6.75	7.27	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)
	H (mm)	Parallelism (mm)	Standard/Optional length
TF	0:4.05± 0.1	0: 0.07/0.07	125±1/Specify
TF	$1:4.05\pm0.03$	1: 0.025/0.025	125±1/Specify

Eg. TF01: Thickness 4.05 ± 0.1 (mm) and Flatness 0.025/0.025 (mm)

Manufacturing Options

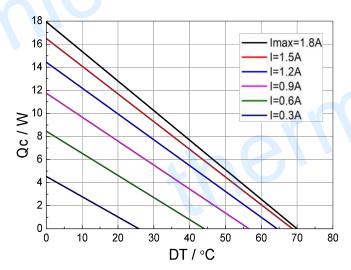
A. Solder:	B. Sealant:	
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)	
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant	
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant	
C. Ceramics:	D. Ceramics Surface Options:	
1. Alumina (Al ₂ O ₃ , white 96%)	1. Blank ceramics (not metalized)	

2. Metalized 2. Aluminum Nitride (AlN)

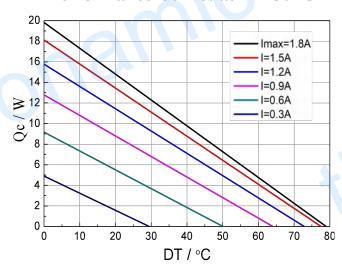
Naming for the Module

TES1-12715- X-X-X-X Ceramics Flatness/ Parallelism

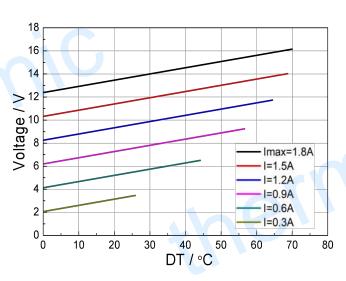
TES1-12715-T100 -NS-TF01 -AIO

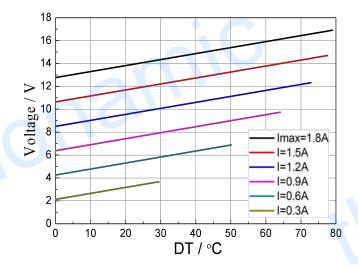

T100: BiSn(Tmelt=138°C)

NS: No sealing AlO: Alumina white 96%

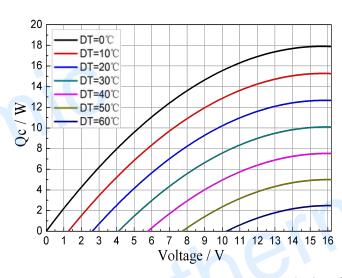

Specification of Thermoelectric Module

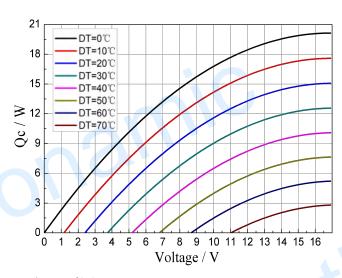
TES1-12715



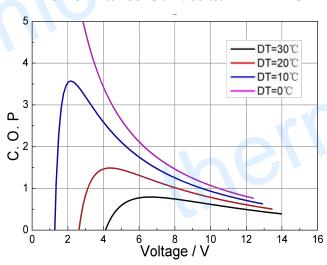


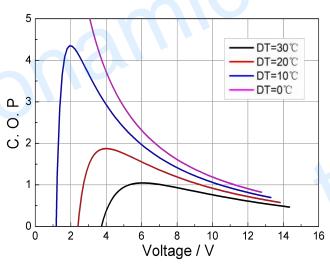
Performance Curves at Th=50 °C



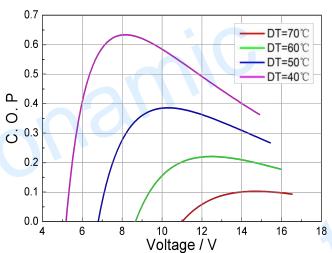

Standard Performance Graph Qc= f(DT)

Standard Performance Graph V = f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TES1-12715


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.