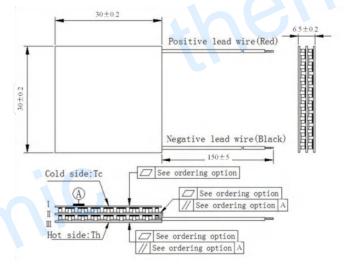
Specification of Thermoelectric Module TES2-127-127-30-T100-NS-TF01-AIN

Description

The TES2-127-127-30 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to 100 °C applications. It is a 127-127 couples module in size of 30 mm × 30 mm (top)/30 mm × 30 mm (bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
$\mathrm{DT}_{\mathrm{max}}({}^{\circ}\!\mathrm{C})$	90	101	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	14.6	16.6	Voltage applied to the module at DT _{max}	
I _{max} (amps)	3.8	3.8	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	23.5	25.3	Cooling capacity at cold side of the module under DT=0°C	
AC resistance (Ohms)	3.8	4.10	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

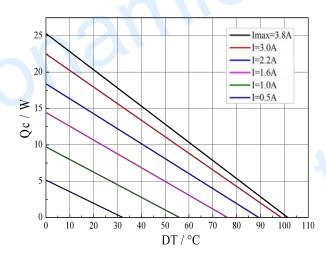
2. Aluminum Nitride (AlN)

2. Metalized

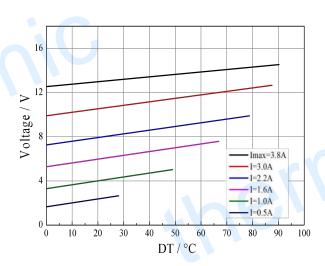
Ordering Option

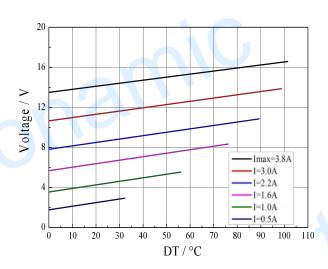
Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	0:6.5±0.2	0: 0.07/0.07	150±5/Specify

Specification of Thermoelectric Module

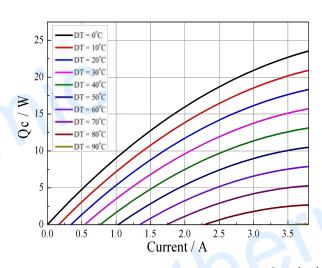

TES2-127-127-30-T100-NS-TF01-AIN

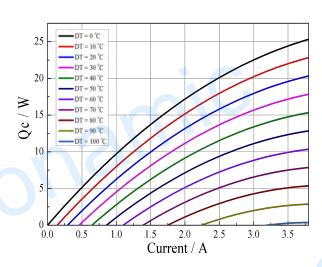
Performance Curves at Th=27 °C


25 Imax=3.8A I=3.0A I=2.2A 20 I=1.6A I=1.0A I=0.5A 20 30 40 50 60 70 80 100


DT / °C

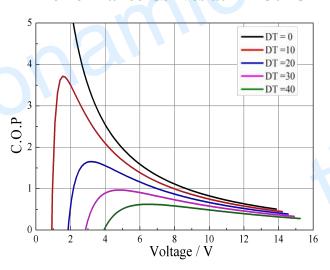
Performance Curves at Th=50 °C



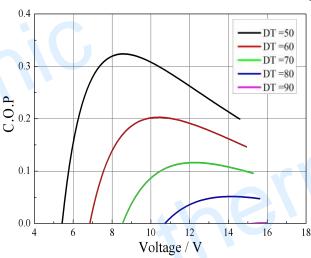

Standard Performance Graph Qc= f(DT)

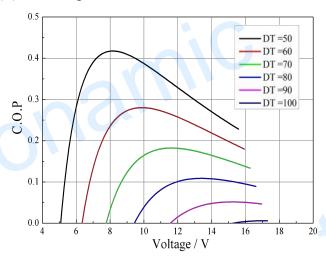
Standard Performance Graph V= f(DT)

Standard Performance Graph Qc= f(I)


Specification of Thermoelectric Module

TES2-127-127-30-T100-NS-TF01-AIN


Performance Curves at Th=27 °C


DT = 0 DT = 10 DT = 20 DT = 30 DT = 40 DT = 40 Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 40 °C

Standard Performance Graph COP = f(V) of DT ranged from 50 to 90/100 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC