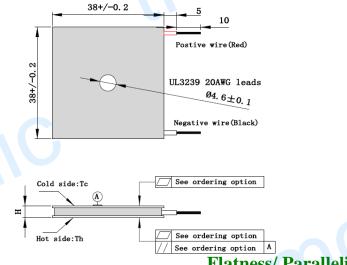
Specification of Thermoelectric Module TETC1-12706L2CH4.6-T200-EPS-AC

Description

The 127 couples, 38 mm \times 38 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 74°C or larger delta Tmax, is designed for superior cooling and heating applications. All the dices and metallic parts are coated with a layer of thin film for anti-corrosion and oxidation in high temperature that ensure the module can work in high temperature for long life. The module is able to run million thermal cycles in 70 °C temperature change range with less 3% degrading. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency.
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Performance Specification Sheet

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Temperature stabilizer
- Liquid cooling
- CPU cooler and scientific instrument
- Photonic and medical systems

criormance specification sheet						
Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂			
$DT_{max}(\mathcal{C})$	74	83	Temperature Difference between cold and hot side of the module			
			when cooling capacity is zero at cold side			
U _{max} (Voltage)	16.8	18.08	Voltage applied to the module at DT _{max}			
I _{max(} amps)	6.3	6.3	DC current through the modules at DT _{max}			
Q _{Cmax} (Watts)	66	73.6	Cooling capacity at cold side of the module under DT=0 $ \mathbb{C}$			
AC resistance(ohms)	2.05	2.25	The module resistance is tested under AC			
Tolerance (%)	±10		For thermal and electricity parameters			

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder: T200: CuSn (M.P.= 227 °C)

B. Sealant:

EPS: Epoxy sealing

C. Ceramics:

Alumina (Al_2O_3 , white 96%)

D. Ceramics Surface Options:

Blank ceramics (not metalized)

E. Pellet Surface Options:

AC: Anti-oxidation Coating

Flatness/ Parallelism Option

Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length	
TF	0:3.9±0.1	0:0.05/0.05	15±1/Specify	

Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: <u>sales@thermonamic.com.cn</u> Web Site: www.thermonamic.com.cn

Standard Performance Graph Qc=f(V)Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: sales@thermonamic.com.cn Web Site: www.thermonamic.com.cn

Operation Cautions

- •Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating

Performance Curve

70

60

50

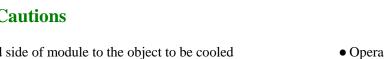
40

30

20

10

0


0

10

20

30

Qc / W

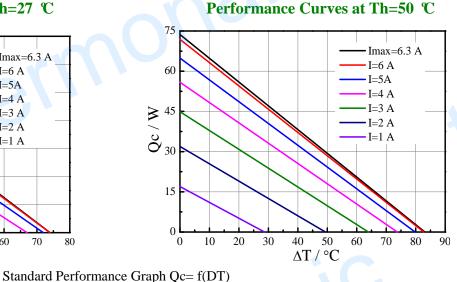
Performance Curves at Th=27 °C

Imax=6.3 A I=6 A I=5A

I=4 A

I=3 A

-I=2 A


I=1 A

60

70

80

- Operation below I_{max} or V_{max}
- Work under DC

40

50

DT / °C

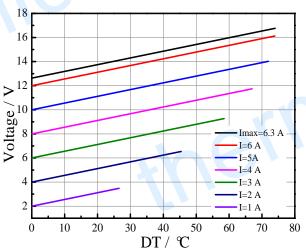
60

Imax=6.3 A

I=6 A

I=5A

I=4 A


I=3 A I=2 A

I=1 A

80

90

70

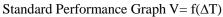
40

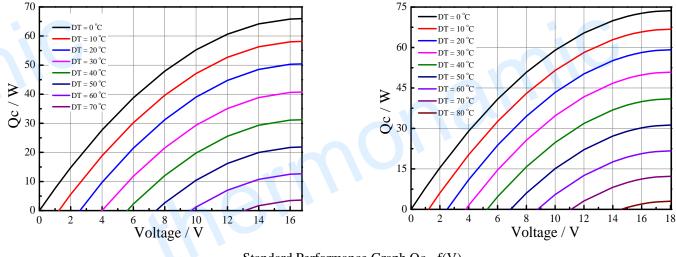
 $\Delta T / °C$

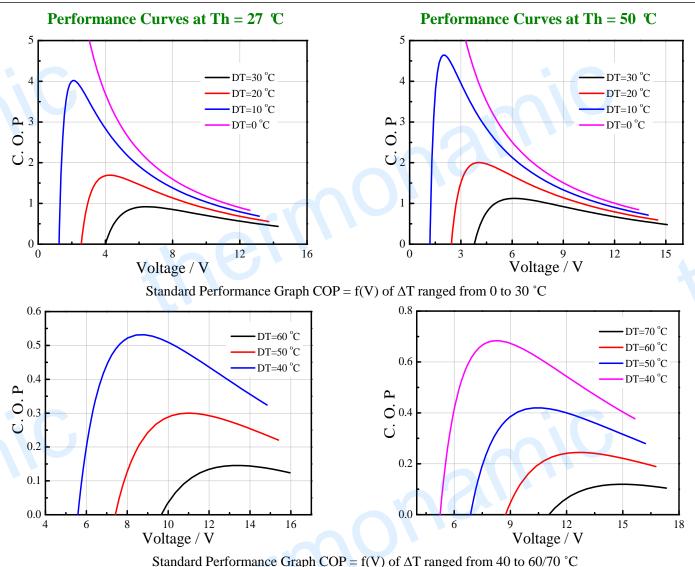
50

18

16

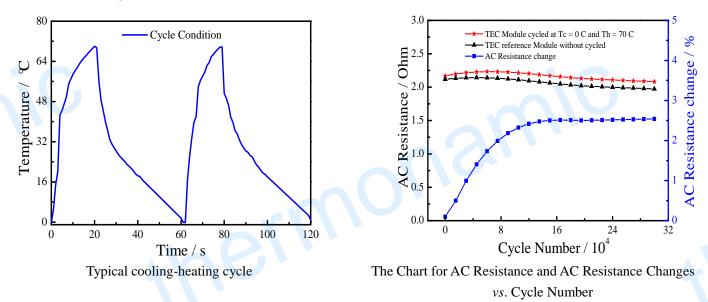

14 $>^{12}$


Voltage /


4

2

0



Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

A typical 127 couples module is fabricated by the unique "soft" process and has demonstrated that it only has 2.5% degrading after 300,000 thermal cycling. The below graphic shows that in beginning 120,000 cycles, it degrade about 2.5%, and then go on stable with very tiny degrading in further 180,000 thermal cycles. It is derived out that the modules can go over million thermal cycles.

TEC Thermal Cycle Lifetime Test

