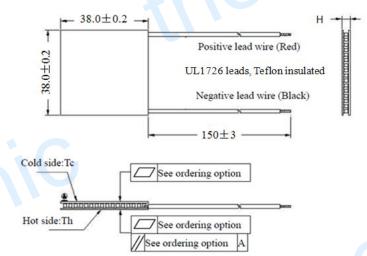
Specification of Thermoelectric Module TETC1-12708L2-T200

Description

The 127 couples, $38 \text{ mm} \times 38 \text{ mm}$ size single module is made of selected high performance ingot and fabricated by our unique "soft" processes to achieve superior cooling/heating performance. It is good for the need of frequently cooling down and heating up to 180 °C applications. The module is able to run million thermal cycles in 70 °C temperature change range with less 3% degrading. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features


- High effective cooling and efficiency.
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Temperature stabilizer
- Liquid cooling
- CPU cooler and scientific instrument
- Photonic and medical systems

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂	
$DT_{max}(C)$	74	83	Temperature Difference between cold and hot side of the module	
			when cooling capacity is zero at cold side	
U _{max} (Voltage)	16.4	17.7	Voltage applied to the module at DT _{max}	
I _{max(} amps)	8.2	8.2	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	87.0	93.7	Cooling capacity at cold side of the module under DT=0 $^{\circ}$ C	
AC resistance(ohms)	1.5	1.66	The module resistance is tested under AC	
Tolerance (%)	±10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

T200: CuSn (M.P.= 227 °C)

B. Sealant:

SS: Silicone sealant

C. Ceramics:

Alumina (Al_2O_3 , white 96%)

D. Ceramics Surface Options:

Blank ceramics (not metalized)

Flatness/ Parallelism Option

Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	0:3.5±0.1	0:0.05/0.05	150±3/Specify

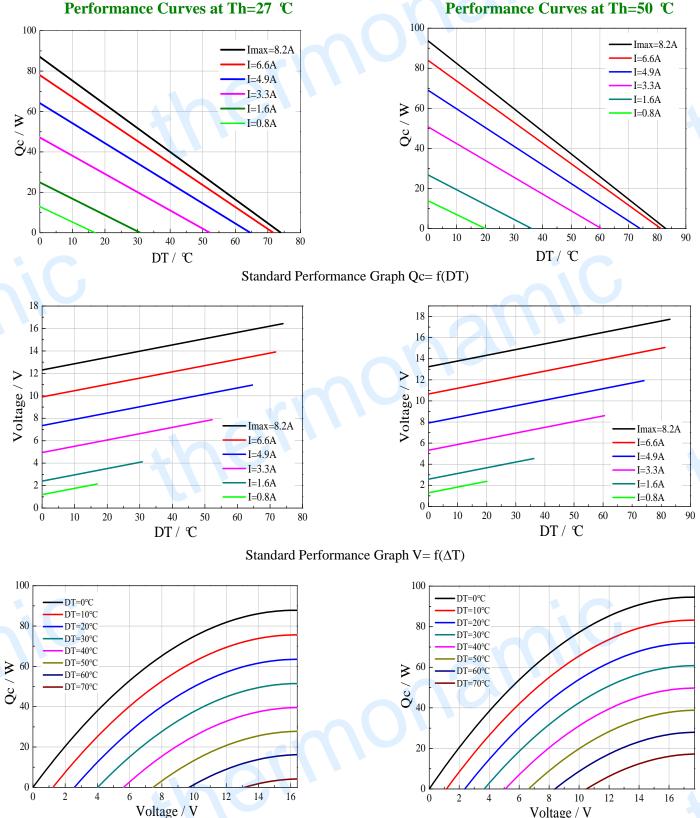
Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: <u>sales@thermonamic.com.cn</u> Web Site: www.thermonamic.com.cn

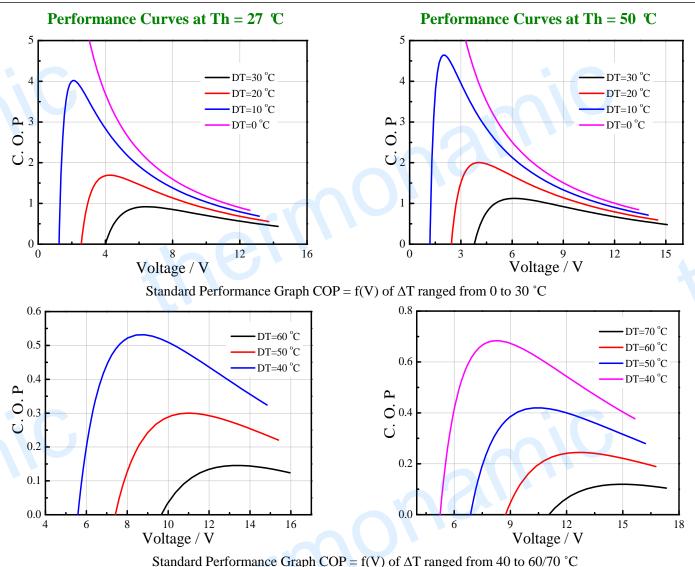
Performance Specification Sheet

0 0 2 4 8 10 12 14 16 6 0 0 2 4 6 8 10 12 14 16 Voltage / V Voltage / V Standard Performance Graph Qc= f(V) Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: sales@thermonamic.com.cn Web Site: www.thermonamic.com.cn

Operation Cautions

- •Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating

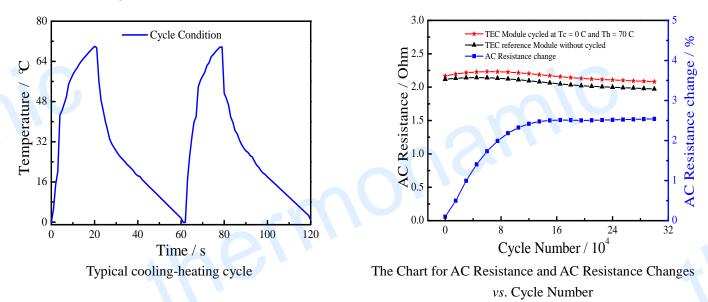

Performance Curve



High Performance and Highly Reliable Solution

for Cooling and Heating Application

- Operation below I_{max} or V_{max}
- Work under DC



Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

A typical 127 couples module is fabricated by the unique "soft" process and has demonstrated that it only has 2.5% degrading after 300,000 thermal cycling. The below graphic shows that in beginning 120,000 cycles, it degrade about 2.5%, and then go on stable with very tiny degrading in further 180,000 thermal cycles. It is derived out that the modules can go over million thermal cycles.

TEC Thermal Cycle Lifetime Test

