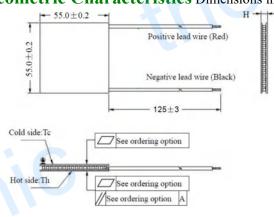
Specification of Thermoelectric Module

TETC1-24116

Description

The 241 couples, 55 mm \times 55 mm size module is made of selected high performance ingot and fabricated by our unique "soft" processes to achieve superior cooling/heating performance. The module is able to run million thermal cycles in 70 °C temperature change range with less 3% degrading. It is good for the need of frequently cooling down and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features


- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	74	83	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	31.1	33.5	Voltage applied to the module at DT _{max}
I _{max(} amps)	15.5	15.5	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	312.9	336.9	Cooling capacity at cold side of the module under DT=0 °C
AC resistance(ohms)	1.50	1.62	The module resistance is tested under AC
Tolerance (%)	± 10		For thermal and electricity parameters

Geometric Characteristics Dimensions in millimeters

Flatness/ Parallelism Option

Suffix	Thickness	Flatness/	Lead wire length(mm)		
	(mm)	Parallelism (mm)	Standard/Optional length		
TF	0:3.5±0.1	0:0.1/0.1	125±3/Specify		
TF	1:3.5±0.05	1:0.05/0.05	125±3/Specify		
Eg. TF01: Thickness 3.5 ± 0.1 (mm) and Flatness $0.05 / 0.05$ (mm)					

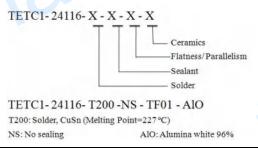
Manufacturing Options

D. C. J.

A. Solder:	B. Sealant:
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant

C. Ceramics:

1. Alumina (Al₂O₃, white 96%)


2. Aluminum Nitride (AlN)

2. Metalized

D. Ceramics Surface Options:

1. Blank ceramics (not metalized)

Naming for the Module

Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: <u>info@thermonamic.com</u> Web Site: www.thermonamic.com

Performance Specification Sheet

Thermonamic Module

Operation Cautions

- •Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating

Performance Curve

35

30

25

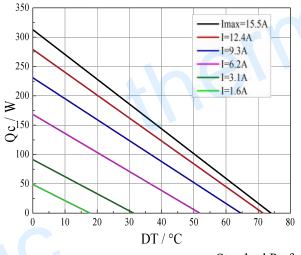
15

10

5

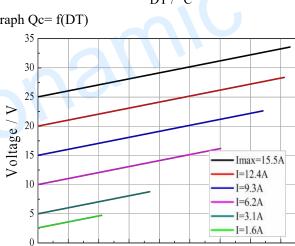
0

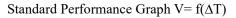
0


10

20

30


Voltage / V 20



Performance Curves at Th=50 °C

10

0

20

30

40

DT / °C

50

60

70

80

Imax=15.5A

I=12.4A

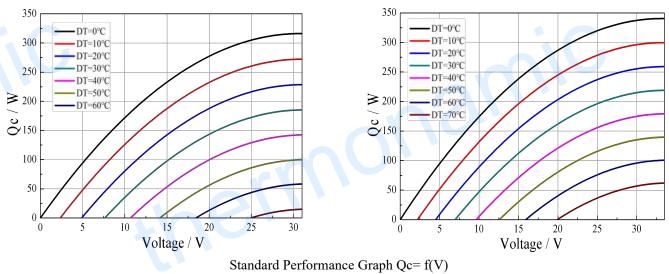
I=9.3A

I=6.2A

I=3.1A

I=1.6A

70

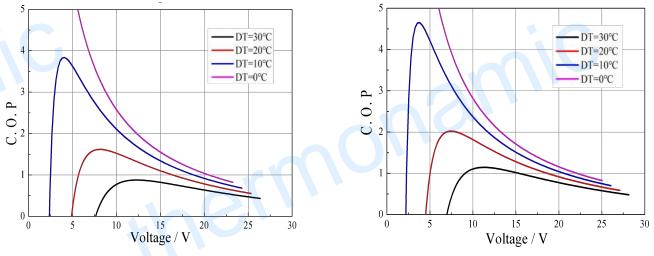

80

60

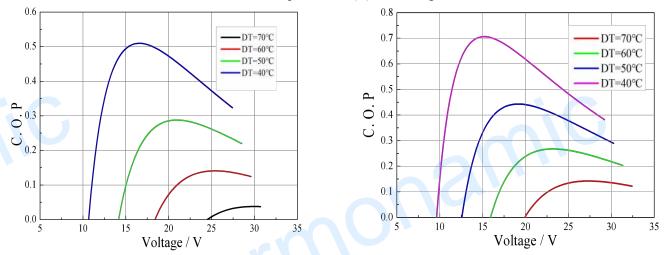
50

40

DT / °C



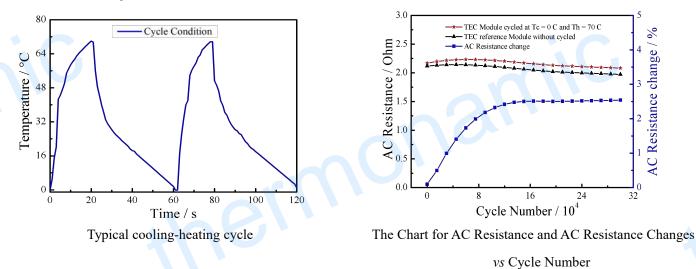
• Work under DC


• Operation below Imax or Vmax

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C



Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

A typical 127 couples module is fabricated by the unique "soft" process and has demonstrated that it only has 2.5% degrading after 300,000 thermal cycling. The below graphic shows that in beginning 120,000 cycles, it degrade about 2.5%, and then go on stable with very tiny degrading in further 180,000 thermal cycles. It is derived out that the modules can go over million thermal cycles.

TEC Thermal Cycle Lifetime Test On TETC1-12706

Creative technology with fine manufacturing processes provides you the reliable and quality products Tel: +86-791-88198288 Fax: +86-791-88198308 Email: info@thermonamic.com Web Site: www.thermonamic.com