Specification of Thermoelectric Module

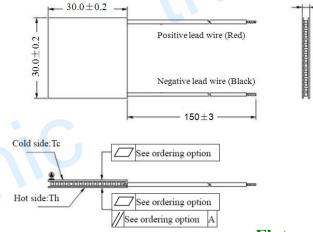
TETS1-19970

Description

The 199 couples, 30 mm \times 30 mm size single module is made of selected high performance ingot and fabricated by our unique "soft" processes to achieve superior cooling/heating performance. The module is able to run over one hundred thousand thermal cycles in 70 °C temperature change range with less 3% degrading. It is good for the need of frequently cooling down and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Performance Specification Sheet

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79 Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side		
U _{max} (Voltage)	25.6	27.4	Voltage applied to the module at DT _{max}	
I _{max(} amps)	7.0	7.0	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	112.2	122.9	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	2.8	3.0	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

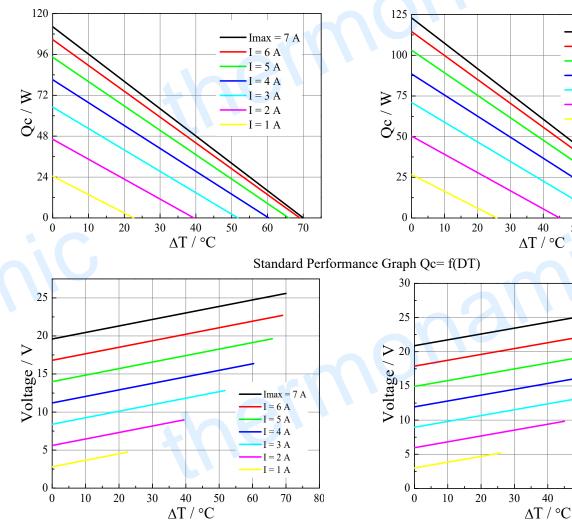
Geometric Characteristics Dimensions in millimeters

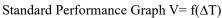
Manufacturing Options

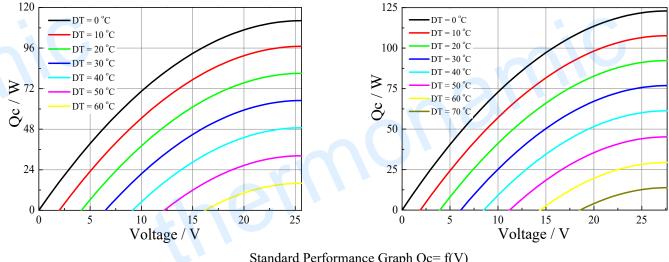
A. Solder:	B. Sealant:
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant
C. Ceramics:	D. Ceramics Surface Options:
1. Alumina (Al ₂ O ₃ , white 96%)	1. Blank ceramics (not metalized)
2. Aluminum Nitride (AlN)	2. Metalized

Flatness/ Parallelism Option

Suffix	Thickness	Flatness/ Parallelism	Lead wire length(mm)
	(mm)	(mm)	Standard/Optional length
TF	0:3.45±0.10	0:0.07/0.07	150±3/Specify


Thermonamic Module


Operation Cautions


- •Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating

Performance Curve

Imax = 7 A

I = 6 A

I = 5 A

I = 4 A

I = 3 A

I = 2 A

I = 1 A

60

50

40

40

50

70

Imax = 7 A

I = 6 AI = 5 A

I = 4 A

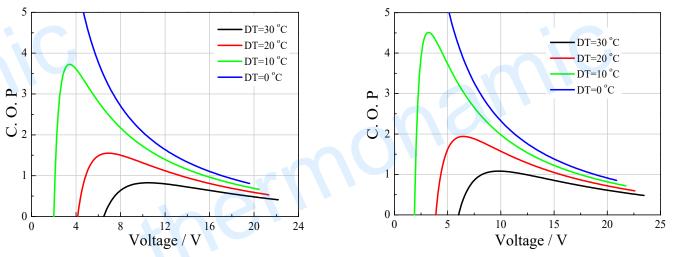
I = 3 A

I = 2 A

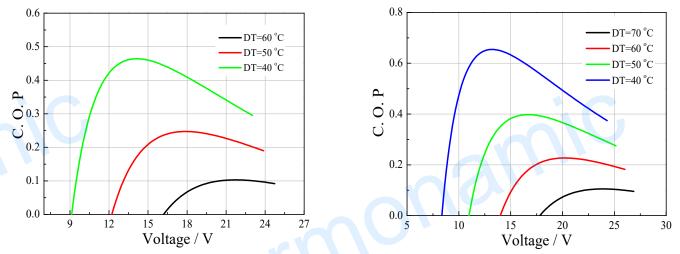
I = 1 A

70

80


60

80


- Operation below Imax or Vmax
- Work under DC
- Performance Curves at Th=50 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

A typical 127 couples module is fabricated by the unique "soft" process and has demonstrated that it only has 2.5% degrading after 300,000 thermal cycling. The below graphic shows that in beginning 120,000 cycles, it degrade about 2.5%, and then go on stable with very tiny degrading in further 180,000 thermal cycles. It is derived out that the modules can go over million thermal cycles.

3.0 80 - TEC Module cycled at Tc = 0 C and Th = 70 C Cycle Condition AC Resistance change / % TEC reference Module without cycled Resistance / Ohm 1.2 1.0 AC Resistance change 64 Temperature / °C 48 32 . OV 0.5 16 0.0 0 16 32 24 20 40 60 80 100 120 0 Cycle Number / 10⁴ Time / s Typical cooling-heating cycle The Chart for AC Resistance and AC Resistance Changes

TEC Thermal Cycle Lifetime Test On TETC1-12706

vs Cycle Number