Specification of Thermoelectric Module

TEHC1-19912

Description

The 199 couples, 40 mm \times 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 74 $^{\circ}$ C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

-			
Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	74	83	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	26.3	28.3	Voltage applied to the module at DT _{max}
I _{max(} amps)	11.6	11.6	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	194.8	211.9	Cooling capacity at cold side of the module under DT=0 °C
AC resistance(ohms)	1.6~1.8	1.77~1.99	The module resistance is tested under AC

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 18AWG leads, PVC insulated Negative lead wire (Black) 150±3 Cold side:Tc See ordering option See ordering option See ordering option

Flatness/ Parallelism Option

Manufacturing Options

A. Solder: B. Sealant:

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217° C) 2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C) 3. EPS: Epoxy sealant

C. Ceramics: D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%) 1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN) 2. Metalized

Naming for the Module

Specification of Thermoelectric Module

TEHC1-19912

Specification of Thermoelectric Module

TEHC1-19912

Performance Curves at Th=27 °C

5 4 DT=30 °C DT=20 °C DT=10 °C DT=0 °C Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- •Sorage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC