Specification of Thermoelectric Module

TES2-127-63-02

Description

The TES2-127-63-02 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to 100 °C applications. It is a 127-63 couples module in size of 29.8 mm × 29.8 mm (top)/14.8 mm×29.8 mm (bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	93	104	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	14.6	16.4	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	1.6	1.6	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	9.5	10.5	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	7.4	8.45	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Ordering Option

Manufacturing Options

A	Solder	•

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217° C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

2. Metalized

Suffix	Thickness	Eleta egg/ Pavalleligns (mans)	Lead wire length(mm)		
	(mm)	Flatness/ Parallelism (mm)	Standard/Optional length		
TF	0:7.75±0.2	0: 0.07/0.07	150±5/Specify		
TF	1: 7.75±0.1	1: 0.025/0.025	150±5/Specify		
Eg. TF00: Thickness 7.75±0.2(mm) and Flatness/ Parallelism: 0.07/0.07(mm)					

Naming for the Module

Specification of Thermoelectric Module TES2-127-63-02

Operation Cautions

0.2

• Attach the cold side of module to the object to be cooled

Current / A

- Attach the hot side of module to a heat radiator for heat dissipating
- Operation or storage module below 100 °C

• Operation below I_{max} or V_{max}

Current / A

• Work under DC

Standard Performance Graph Qc= f(I)